Two weight norm inequality for the fractional maximal operator and the fractional integral operator
نویسندگان
چکیده
منابع مشابه
A Sharp Rearrangement Inequality for Fractional Maximal Operator
We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of f, M f, by an expression involving the nonincreasing rearrangement of f. This estimate is used to obtain necessary and suucient conditions for the boundedness of M between classical Lorentz spaces.
متن کاملTwo-Weight Orlicz Type Integral Inequalities for the Maximal Operator
p A v = u , (1) holds for t = ) t ( = ) t ( , but not if 1 = p . Also for each < p 1 there exists a pair p A ) v , u ( so that (1) fails in the special case t = ) t ( = ) t ( [3, p. 395]. In these exceptional cases we have a weak type inequality. An excellent reference is the book by J.Garcia-Cuerva and J.L.Rubio de Francia [3]. We refer the reader interested in the current stat...
متن کاملTwo weight norm inequalities for fractional one-sided maximal and integral operators
In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .
متن کاملIntegral representations and properties of operator fractional
Operator fractional Brownian motions (OFBMs) are (i) Gaussian, (ii) operator self-similar, and (iii) stationary increment processes. They are the natural multivariate generalizations of the well-studied fractional Brownian motions. Because of the possible lack of time reversibility, the defining properties (i)-(iii) do not, in general, characterize the covariance structure of OFBMs. To circumve...
متن کاملMaximal functions and the control of weighted inequalities for the fractional integral operator
We study weak-type (1, 1) weighted inequalities for the fractional integral operator Iα. We show that the fractional maximal operatorMα controls these inequalities when the weight is radially decreasing. However, we exhibit some counterexamples which show that Mα is not appropriate for this control on general weights. We do provide, nevertheless, some positive results related to this problem by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicacions Matemàtiques
سال: 1998
ISSN: 0214-1493
DOI: 10.5565/publmat_42198_03