Two weight norm inequality for the fractional maximal operator and the fractional integral operator

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Rearrangement Inequality for Fractional Maximal Operator

We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of f, M f, by an expression involving the nonincreasing rearrangement of f. This estimate is used to obtain necessary and suucient conditions for the boundedness of M between classical Lorentz spaces.

متن کامل

Two-Weight Orlicz Type Integral Inequalities for the Maximal Operator

p A v = u  , (1) holds for t = ) t ( = ) t (   , but not if 1 = p . Also for each   < p 1 there exists a pair p A ) v , u (  so that (1) fails in the special case t = ) t ( = ) t (   [3, p. 395]. In these exceptional cases we have a weak type inequality. An excellent reference is the book by J.Garcia-Cuerva and J.L.Rubio de Francia [3]. We refer the reader interested in the current stat...

متن کامل

Two weight norm inequalities for fractional one-sided maximal and integral operators

In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: Z +∞ −∞ M α (f)(x) w(x) dx ≤ Ap Z +∞ −∞ |f(x)|M αp(w)(x) dx, where 0 < α < 1 and 1 < p < 1/α. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral I α .

متن کامل

Integral representations and properties of operator fractional

Operator fractional Brownian motions (OFBMs) are (i) Gaussian, (ii) operator self-similar, and (iii) stationary increment processes. They are the natural multivariate generalizations of the well-studied fractional Brownian motions. Because of the possible lack of time reversibility, the defining properties (i)-(iii) do not, in general, characterize the covariance structure of OFBMs. To circumve...

متن کامل

Maximal functions and the control of weighted inequalities for the fractional integral operator

We study weak-type (1, 1) weighted inequalities for the fractional integral operator Iα. We show that the fractional maximal operatorMα controls these inequalities when the weight is radially decreasing. However, we exhibit some counterexamples which show that Mα is not appropriate for this control on general weights. We do provide, nevertheless, some positive results related to this problem by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publicacions Matemàtiques

سال: 1998

ISSN: 0214-1493

DOI: 10.5565/publmat_42198_03